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Background: Power of Serverless Computing
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Serverless adoption by cloud provider
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[1]. https://www.datadoghg.com/state-of-serverless/
[2]. Global electricity demand of data centers 2010-2030.

Electricity usage (TWh) of Data Centers 2010-2030
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https://www.datadoghq.com/state-of-serverless/

l Background: Serverless Scheduling
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Both Inter-node and Intra-node serverless function scheduling optimization methods lack
per-function performance tuning
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Background: Processor-sharing Scheduling Strategies
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Existing serverless function scheduling: Processor Sharing (PS)

y
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Hardware

Latency-oriented PS scheduling:
: Resource contention :
LLC pollution
Fairly Scheduling

No power- Coarse-grained

aware latency power
analysis management

Designing fine-grained power management methods with processor (core) sharing is important.

[1] Kaffes, et al. "Hermod: principled and practical scheduling for serverless functions." Proceedings of the 13th
Symposium on Cloud Computing. 2022.



Challenges
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Challenge 1:

The complexity of co-located serverless functions makes it
challenging to seize the core-level efficiency opportunities.
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* Different Languages

Different Resource Occupation
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Best-suited Frequency
of Exec. Phase (GHz)
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Fig. 1. Variety of functions’ best-suited frequency

Indicate functions’ power consumption simply by

frequency is difficult.
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Challenge 2: )
Core-level power management cannot be directly
implemented in current serverless computing platforms.

kernel

o

| hardware |

DVFS support socket-level frequency tuning but core-
level power monitoring has no hardware support yet.

hardware

CPU
REE TEE
( T 1 ! ~—VFS
\ DVFS —~DAP

We seek to design a core-level serverless scheduling method to achieve power saving with QoS guaranteed.
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l Observations
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e Limited Intra-function Parallelism:
* Functions hardly suffer performance loss when assigned to only a single CPU core.

(a) Compression
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—— 2 Cores, Medium Input
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One can assign each function on only one CPU core with high resource efficiency.




Observations
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* Limited Intra-function Parallelism:
* Functions hardly suffer performance loss when assigned to only a single CPU core.

* Consistent Latency-Frequency Mappings Across Functions:
e Different functions have specific mappings of normalized latency and allocated

frequency, which remain consistent across diverse inputs.
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One can use lower CPU frequency if the performance reduction is acceptable.




l Observations
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* Limited Intra-function Parallelism:
* Functions hardly suffer performance loss when assigned to only a single CPU core.
* Consistent Latency-Frequency Mappings Across Functions:
e Different functions have specific mappings of normalized latency and allocated
frequency, which remain consistent across diverse inputs.
* Improving CPU Utilization by Co-locating Non-CPU-intensive Functions:
* We can co-locate non-CPU-intensive functions to leverage available CPU
resources and execute CPU-intensive functions independently by assigning unique
CPU cores to maintain QoS.

@@ Colocated by 1 Func. B Colocated by 2 Func. B Colocated by 3 Func.
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' System Design: Overview R Jﬂ

Function Request _ (3). QOS'awa re Req ueSt
€ Docker Image -
€ Function Input (2). FunCtion Latency Queue )

Predictor

No

Is profiled?

(4). Core-Level Scheduler (CS)



System Design: Function level Tuning Table

. T . T |
Function | Function Level Tuning Table |
Profiler | I

| Function Is Function |
| Profiled Quota |

Generate : Compression True 1.0 _— :
|  Download True 0.3 :
I

............................. N s I
| Frequenc o R Latenc
: a Y performance y
| 800Mhz 27 0895 ¢
N
I
| 2200Mhz 1.0 0.33s
Key idea:
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CPU core utilization in
docker stat.

Quotas are calculated by the

» Functions with high quotas can monopolize a core.
» Functions with low quotas will co-locate with other functions per core.

(d) Upload
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We obtain a normalized
performance curve for
each function at different
CPU frequencies.
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System Design: Function Latency Predictor

18.6% functions generate] —#— Small Input ~ —#— Medium Input
0.3

99.6% invocations
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Training Data Auto Generator

Runtime Collection

Key idea:

» We can estimate function execution time
according to a specified set of inputs based on
the performance latency trends.

» Use ML-based latency predictor to accurately
estimate the latency giving the CPU frequency.
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Functions on different input size has different end-to-end latency.
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Functions on different core allocation keeps the same latency
trends, even the input size changed.
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l System Design: Function Latency Predictor
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* Different Types of Function Inputs:
* Numeric Input: Represented by concrete numerical values.

Function Latency Predictor

o  Composite Input: A collection of multiple attributes.
Offline Training Inference ¢ .
* Numeric Input: Composite Input:
————— Pata~ " - ,
: —- Data | * Pixel Height
| Training Data Auto Generator : N ;7 e Pixel Width
| é i — * Image Format
| : : | File size : mage Forma
| Runtime Collection I » Ry \8 » «  Image Size
L-— | ‘ B High accuracy of
a2 latency prediction
Z(y i — Vi ) 1 m Function Overhead yp e
R2=1- — RMSE = o Z (yl _ 5\71')2 Training  Inference RMSE
Z(yl V) m Upload 20ms  0.19ms 0988 0.028
i=1 Download 20ms  0.19ms 0988 0.023
Chameleon 3.8 ms 0.19 ms 0.894 0.111
. BFS 2.2 ms 0.18 ms 0998  0.007
Key dESIgn: Compression 29ms 0. 18 ms  0.999  0.001
. . . Dynamic HTML 1.2
> We adopt linear regression as the prediction model for latency and yanme o
- _ Linpack 2.1 ms Lower tralnlng and
utilize R2 score and Root Mean Square Error (RMSE) as metrics to Json dump 2.1 ms
Image resize 4.2 ms mference Iatency
evaluate the models. DNA visualization 2.3 ms .

» We train specific models for different types of serverless functions.
15



System Design: QoS-aware Request Queue P R
QoS-aware Request Queue Timeline R
PrOTY | ey [ [0 ) [ Waiting time  Service time
Ranine Osenvice A N

Service B NI

Response Ratio (RR) based priority ranking:

RR — Waiting Time 4 Service Time

Service Time . i
Timeline

A 4

Waiting time  Service time

@scrice » I
Request with a higher response ] Service B [

ratio (RR) will be prioritized.

Our design combines the advantage of Shortest Job First and First Come
First Serve algorithms to fairly handle both short tasks and long tasks.
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System Design: Core-Level Scheduler

RR =

/// I \\\ m L 8
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§ (e OODOOOO
Function Priority Container | CPU Frequency | Function | Function
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. i i
/’ ! Get Container Update Container :
el | Status Status :
» 1 v

_ Waiting Time + Service Time /

Service Time

Core-Level Status Record
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System Design: Core-Level Scheduler
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= I Function | Priority | Container | CPU Frequency Function Function

= Frequency Container State Request Ranking Allocation Adjustment Invocation Return
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= S \

3 [ . O O O O O Busy Core (&) Running ContalnerI o o o |
Y _———— ! 1 O Idle Core /¢ Free Container I
| Core-Level Status Record I . |
: Status Cores Containers : @ Bind idl f th list -
| URUARTG R B2 |L ind an idle core from the core lis I
| .
I @ | (®) Already bind an idle core
[ Free N S | I I
b | . @ Preempt the core from a free container .

e Core binding:

Bind functions with free CPU cores in a container

Assign other CPU cores to a full-use container and bind with the functions

Preempt a core from other functions and assign an idle container on this core




' System Design: Core-Level Scheduler

Core-Level Scheduler

Frequency
Estimation

Container
Allocation

State
Monitoring

Frequency Tunning [

Function Execution
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Core-Level Status Record

Status

Running
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Function
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Container
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| CPU Frequency

Adjustment
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Function
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Function
Return
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e

BDR =

QoS

Best Degradation Rate

Service Time
= QoS Ratio — RR + 1

* Core Frequency configuration:

Find frequency with acceptable

performance
Select the highest frequency among

different functions

* Server state:

Service Time

——

Search Normalized
o . Latency under Different
~ Waiting Time  cpy Frequencies in FLTT

Adjusting CPU |

Core to Optimal I

Frequency

* Idle mode: The system does not run
processes in the highest frequency.

 Busy mode: If there are too many waiting

tasks in the queue, all cores work will switch
to the highest CPU frequency.
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System Design: Overview
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Evaluation: Methodology
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Evaluated Functions

. Function Description Benchmark
e selected from FunctionBench [1] and SeBS [2] P Render HTML/XML fil FB
linpack Run linpack benchmark FB
Load Generator json dump Deserialize and serialize json file FB
. . upload Upload to the remote storage FB
download Download from the remote storage FB
* emulate the fluctuations of the coming requests  dowis I e &
* include peaks and valleys " Run breadthhuetsoarch algoritm SeDS
. image resize Resize a image into the thumbnail SeBS
MEtrIC DNA visualization  Process DNA sequence data SeBS
e P95 function latency
Experlment EﬂVlronment Systems Scheduling Method PM
* separated CPU sockets for function execution and pss Bascline)  First In First Processing: server-level  No
. CS w/o PM Prediction-based HRRN; core-level No
the SChed u I I ng SyStem CS (Ours) Prediction-based HRRN; core-level Yes

e comparative experiments across three systems

[1] Kim, et al. "Functionbench: A suite of workloads for serverless cloud function service." 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE, 2019.
[2] Copik, et al. "Sebs: A serverless benchmark suite for function-as-a-service computing." Proceedings of the 22nd

International Middleware Conference. 2021. 99



I Evaluation: Experiment Result
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e CS achieves an average of 8% power saving when the workload is below the threshold.
* CS can also have power reduction about 4% compared with PSS on high resource pressure.
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Evaluation: Experiment Result
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Em PSS B CS w/o PM Nl CS

(a) Chameleon (b) Compression (c) BFS (d) Dynamic HTML (e) Download
2.0 2.0 2.0 2.0 2.0
7 1.5 1.5 1.5 -
=
2 1.0 1.0 4 1.0 1
8
[gv]
— 0.5 1 0.5 0.5 -
0.0 - . 0.0 -
Mean Tail Mean Tail Mean Tail Mean Tail Mean Tail
o (f) Upload o (g) Linpack o (h) DNA Visualization o (i) Json Dump o (j) Image Resize

1.5 1

=
wn

1.0 1

Latency(s)
5

o
n

0.5 | EEEE

. 0.0 .0 - .0 -
Mean Tail Mean Tail Mean Tail Mean Tail Mean Tail

o
o

e Our work can schedule the tasks before the deadlines (while PSS can not in some cases).
* Compared with the CS without power management (CS w/o PM), we show acceptable latency reduction.
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Experiment Result

Evaluation

- CS w/o PM

PSS

53 1

(138MW) Jamod

50

30 40
Timestamp
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CS is sensitive to fluctuations in workload. When the workload decreases, the system transitions into a power-

CS can adapt system dynamically with faster frequency configuration and lower power consumption.
saving mode to enhance efficiency with QoS guaranteed.
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' Conclusion

(1). Function Level Tuning Table
(2). Function Latency Predictor
(3). QoS-aware Request Queue

(4). Core-Level Scheduler (CS)

Detailed latency and power analysis of

serverless functions.

Accurate ML-based latency prediction
methods for efficient core binding.
Core-level scheduling mechanism with
low-overhead core configuration.
Significantly saving power cost under

QoS guarantee.
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Thank You & Questions

Contact me at: jing618.sjtu.edu.cn




