
Improving the Efficiency of Serverless Computing via
Core-Level Power Management

Du Liu, Jing Wang, Xinkai Wang, Chao Li*, Lu Zhang, Xiaofeng Hou,
Xiaoxiang Shi and Minyi Guo

Shanghai Jiao Tong University
Department of Computer Science and Engineering

1

• Background

• Observations

• System Design

• Evaluation

• Conclusion

Outline

2

Power management of serverless functions is very
important to the data center electricity cost.

3

Background: Power of Serverless Computing

[1]. https://www.datadoghq.com/state-of-serverless/
[2]. Global electricity demand of data centers 2010-2030.

Serverless usage continues to rise across major clouds.

https://www.datadoghq.com/state-of-serverless/

Both Inter-node and Intra-node serverless function scheduling optimization methods lack
per-function performance tuning

4

Background: Serverless Scheduling

Server-level scheduling:

Shortest Remaining
Processing Time (SRPT)

First-Come, First-Served
(FCFS)Invoker

Fn Fn Fn

Controller

Invoker

Fn Fn Fn
……

Inter-node Scheduling

Intra-node Scheduling

Fn Fn Fn

Fn

Function
queues:

CPU cores CPU cores No per-function
performance tuning

Assign available sockets

a batch of arrived functions

Server-level Serverless Scheduling Core-level Serverless Scheduling

Background: Processor-sharing Scheduling Strategies

Kernel Features

UnionFS Driver

FS layer

FS layer

Container Management Interface

Containers Containers

Completely Fair
Scheduler (CFS)

Cgroups

Chroot

Hardware

Server-level Function Scheduler

ClientFunction Request Queue

RB-Tree

Fairly Schedule

Running processes

Core Allocating

Namespace

K
e
rn

e
l

U
se

r

Existing serverless function scheduling: Processor Sharing (PS)

[1] Kaffes, et al. "Hermod: principled and practical scheduling for serverless functions." Proceedings of the 13th
Symposium on Cloud Computing. 2022.

5

Latency-oriented PS scheduling:

Resource contention

LLC pollution

Fairly Scheduling

No power-
aware latency

analysis

Coarse-grained
power

management

Core-level
Scheduler (CS)

Designing fine-grained power management methods with processor (core) sharing is important.

Challenges

6

We seek to design a core-level serverless scheduling method to achieve power saving with QoS guaranteed.

Challenge 1:
The complexity of co-located serverless functions makes it
challenging to seize the core-level efficiency opportunities.

Indicate functions’ power consumption simply by
frequency is difficult.

Challenge 2:
Core-level power management cannot be directly
implemented in current serverless computing platforms.

DVFS support socket-level frequency tuning but core-
level power monitoring has no hardware support yet.

• Background

• Observations

• System Design

• Evaluation

• Conclusion

Outline

7

Observations

• Limited Intra-function Parallelism:
• Functions hardly suffer performance loss when assigned to only a single CPU core.

8

One can assign each function on only one CPU core with high resource efficiency.

Observations

• Limited Intra-function Parallelism:
• Functions hardly suffer performance loss when assigned to only a single CPU core.

• Consistent Latency-Frequency Mappings Across Functions:
• Different functions have specific mappings of normalized latency and allocated

frequency, which remain consistent across diverse inputs.

9

One can use lower CPU frequency if the performance reduction is acceptable.

Observations

• Limited Intra-function Parallelism:
• Functions hardly suffer performance loss when assigned to only a single CPU core.

• Consistent Latency-Frequency Mappings Across Functions:
• Different functions have specific mappings of normalized latency and allocated

frequency, which remain consistent across diverse inputs.
• Improving CPU Utilization by Co-locating Non-CPU-intensive Functions:

• We can co-locate non-CPU-intensive functions to leverage available CPU
resources and execute CPU-intensive functions independently by assigning unique
CPU cores to maintain QoS.

10

• Background

• Observations

• System Design

• Evaluation

• Conclusion

Outline

11

System Design: Overview

Function Level Tuning Table

Frequency
Normalized
Performance

Latency

800Mhz 2.7 0.89s

……

2200Mhz 1.0 0.33s

Core-Level Status Record

Function
Is

Profiled
Function

Quota

Compression True 1.0

Download True 0.3

……

Function Request

◆ Docker Image
◆ Function Input

Function
Profiler

QoS-aware Request Queue

Is profiled?

Fn Fn Fn

Control

Function

Data

Frequency
Estimation

C
o

re
-L

e
ve

lS
ch

ed
u

le
r

Function Execution

Fn Fn FnFrequency Tunning

State
Monitoring

Container
Allocation

CPU Core

Function Latency Predictor

Runtime Collection

Training Data Auto Generator

Offline Training Inference

Status Cores Containers

Running 1

……

Free N

12

Core Binding

Data

Priority
Ranking

Generate

Yes

No

(1). Function Level Tuning Table

(2). Function Latency
Predictor

(3). QoS-aware Request
Queue

(4). Core-Level Scheduler (CS)

System Design: Function level Tuning Table

Function Level Tuning Table

Frequency
Normalized
Performance

Latency

800Mhz 2.7 0.89s

……

2200Mhz 1.0 0.33s

Function
Is

Profiled
Function

Quota

Compression True 1.0

Download True 0.3

……

Function
Profiler

13

Generate

Key idea:
➢ Functions with high quotas can monopolize a core.
➢ Functions with low quotas will co-locate with other functions per core.

Quotas are calculated by the
CPU core utilization in
docker stat.

We obtain a normalized
performance curve for
each function at different
CPU frequencies.

System Design: Function Latency Predictor

14

Function Latency Predictor

Runtime Collection

Training Data Auto Generator

Offline Training Inference

Data

Key idea:
➢ We can estimate function execution time

according to a specified set of inputs based on
the performance latency trends.

➢ Use ML-based latency predictor to accurately
estimate the latency giving the CPU frequency.

Functions on different input size has different end-to-end latency.

Functions on different core allocation keeps the same latency
trends, even the input size changed.

18.6% functions generate
99.6% invocations

System Design: Function Latency Predictor

15

Function Latency Predictor

Runtime Collection

Training Data Auto Generator

Offline Training Inference

Data

• Different Types of Function Inputs:
• Numeric Input: Represented by concrete numerical values.
• Composite Input: A collection of multiple attributes.

Key design:
➢ We adopt linear regression as the prediction model for latency and

utilize R2 score and Root Mean Square Error (RMSE) as metrics to
evaluate the models.

➢ We train specific models for different types of serverless functions.

• Pixel Height
• Pixel Width
• Image Format
• Image Size
• ……

File size

Numeric Input: Composite Input:

High accuracy of
latency prediction

Lower training and
inference latency

System Design: QoS-aware Request Queue

16

QoS-aware Request Queue

Fn Fn Fn
Priority
Ranking

Response Ratio (RR) based priority ranking:

Waiting time Service time

Timeline

Service A

Service B

Request with a higher response
ratio (RR) will be prioritized.

Waiting time Service time

Timeline

Service A

Service B

Our design combines the advantage of Shortest Job First and First Come
First Serve algorithms to fairly handle both short tasks and long tasks.

System Design: Core-Level Scheduler

17

Core-Level Status Record
Frequency
Estimation

C
o

re
-L

e
ve

l
S
ch

e
d

u
le

r

Function Execution

Fn Fn FnFrequency Tunning

State
Monitoring

Container
Allocation

CPU Core

Status Cores Containers

Running 1

……

Free NCore Binding

Function
Request

Priority
Ranking

Container
Allocation

CPU Frequency
Adjustment

Core-Level Status Record

Update Container
Status

Function
Invocation

Function
Return

Get Container
Status

System Design: Core-Level Scheduler

Fn Fn Fn

①

②

③

Busy Core

Idle Core

Running Container

Free Container

Bind an idle core from the core list

Already bind an idle core

Preempt the core from a free container

Preempt Bind an Idle core×

18

Function
Request

Priority
Ranking

Container
Allocation

CPU Frequency
Adjustment

Function
Invocation

Function
Return

• Core binding:
• Bind functions with free CPU cores in a container
• Assign other CPU cores to a full-use container and bind with the functions
• Preempt a core from other functions and assign an idle container on this core

System Design: Core-Level Scheduler

19

Function
Request

Priority
Ranking

Container
Allocation

CPU Frequency
Adjustment

Function
Invocation

Function
Return

Best Degradation Rate Search Normalized
Latency under Different
CPU Frequencies in FLTT

Adjusting CPU
Core to Optimal
Frequency

• Server state:
• Idle mode: The system does not run

processes in the highest frequency.
• Busy mode: If there are too many waiting

tasks in the queue, all cores work will switch
to the highest CPU frequency.

• Core Frequency configuration:
• Find frequency with acceptable

performance
• Select the highest frequency among

different functions

System Design: Overview

Function Level Tuning Table

Frequency
Normalized
Performance

Latency

800Mhz 2.7 0.89s

……

2200Mhz 1.0 0.33s

Core-Level Status Record

Function
Is

Profiled
Function

Quota

Compression True 1.0

Download True 0.3

……

Function Request
◆ Docker Image
◆ Function Input

Function
Profiler

QoS-aware Request Queue

Is profiled?

Fn Fn Fn

Control

Function

Data

Frequency
Estimation

C
o

re
-L

e
ve

l
S
ch

e
d

u
le

r

Function Execution

Fn Fn FnFrequency Tunning

State
Monitoring

Container
Allocation

CPU Core

Function Latency Predictor

Runtime Collection

Training Data Auto Generator

Offline Training Inference

Status Cores Containers

Running 1

……

Free N

20

Core Binding

Data

Priority
Ranking

Generate

Yes

No

• Background

• Observations

• System Design

• Evaluation

• Conclusion

Outline

21

Evaluation: Methodology

• Evaluated Functions
• selected from FunctionBench [1] and SeBS [2]

• Load Generator
• emulate the fluctuations of the coming requests
• include peaks and valleys

• Metric
• P95 function latency

• Experiment Environment
• separated CPU sockets for function execution and

the scheduling system
• comparative experiments across three systems

[1] Kim, et al. "Functionbench: A suite of workloads for serverless cloud function service." 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE, 2019.
[2] Copik , et al. "Sebs: A serverless benchmark suite for function-as-a-service computing." Proceedings of the 22nd
International Middleware Conference. 2021. 22

Evaluation: Experiment Result

• CS achieves an average of 8% power saving when the workload is below the threshold.
• CS can also have power reduction about 4% compared with PSS on high resource pressure.

23

Evaluation: Experiment Result

• Our work can schedule the tasks before the deadlines (while PSS can not in some cases).
• Compared with the CS without power management (CS w/o PM), we show acceptable latency reduction.

24

Evaluation: Experiment Result

• CS can adapt system dynamically with faster frequency configuration and lower power consumption.
• CS is sensitive to fluctuations in workload. When the workload decreases, the system transitions into a power-

saving mode to enhance efficiency with QoS guaranteed.

25

Conclusion

➢ Detailed latency and power analysis of

serverless functions.

➢ Accurate ML-based latency prediction

methods for efficient core binding.

➢ Core-level scheduling mechanism with

low-overhead core configuration.

➢ Significantly saving power cost under

QoS guarantee.

26

(1). Function Level Tuning Table

(2). Function Latency Predictor

(3). QoS-aware Request Queue

(4). Core-Level Scheduler (CS)

T h a n k Yo u & Q u e s t i o n s

Contact me at: jing618.sjtu.edu.cn

