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Power management of serverless functions is very 
important to the data center electricity cost. 
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Background: Power of Serverless Computing

[1]. https://www.datadoghq.com/state-of-serverless/
[2]. Global electricity demand of data centers 2010-2030.

Serverless usage continues to rise across major clouds.

https://www.datadoghq.com/state-of-serverless/


Both Inter-node and Intra-node serverless function scheduling optimization methods lack
per-function performance tuning
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Background: Serverless Scheduling
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Background: Processor-sharing Scheduling Strategies
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Existing serverless function scheduling: Processor Sharing (PS)

[1] Kaffes, et al. "Hermod: principled and practical scheduling for serverless functions." Proceedings of the 13th 
Symposium on Cloud Computing. 2022.
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Latency-oriented PS scheduling:

Resource contention

LLC pollution

Fairly Scheduling

No power-
aware latency 

analysis

Coarse-grained 
power 

management

Core-level 
Scheduler (CS)

Designing fine-grained power management methods with processor (core) sharing is important.



Challenges
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We seek to design a core-level serverless scheduling method to achieve power saving with QoS guaranteed.

Challenge 1: 
The complexity of co-located serverless functions makes it 
challenging to seize the core-level efficiency opportunities. 

Indicate functions’ power consumption simply by 
frequency is difficult.

Challenge 2: 
Core-level power management cannot be directly 
implemented in current serverless computing platforms. 

DVFS support socket-level frequency tuning but core-
level power monitoring has no hardware support yet.
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Observations

• Limited Intra-function Parallelism:
• Functions hardly suffer performance loss when assigned to only a single CPU core.
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One can assign each function on only one CPU core with high resource efficiency. 



Observations

• Limited Intra-function Parallelism:
• Functions hardly suffer performance loss when assigned to only a single CPU core.

• Consistent Latency-Frequency Mappings Across Functions:
• Different  functions have specific mappings of normalized latency and allocated 

frequency, which remain consistent across diverse inputs.
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One can use lower CPU frequency  if the performance reduction is acceptable. 



Observations

• Limited Intra-function Parallelism:
• Functions hardly suffer performance loss when assigned to only a single CPU core.

• Consistent Latency-Frequency Mappings Across Functions:
• Different  functions have specific mappings of normalized latency and allocated 

frequency, which remain consistent across diverse inputs.
• Improving CPU Utilization by Co-locating Non-CPU-intensive Functions:

• We can co-locate non-CPU-intensive functions to leverage available CPU 
resources and execute CPU-intensive functions independently by assigning unique 
CPU cores to maintain QoS.
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System Design: Overview

Function Level Tuning Table
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Core Binding
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(1). Function Level Tuning Table

(2). Function Latency 
Predictor

(3). QoS-aware Request
Queue

(4). Core-Level Scheduler (CS)



System Design: Function level Tuning Table

Function Level Tuning Table

Frequency
Normalized
Performance

Latency

800Mhz 2.7 0.89s

……

2200Mhz 1.0 0.33s

Function
Is 

Profiled
Function

Quota

Compression True 1.0

Download True 0.3

……

Function
Profiler
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Generate

Key idea:
➢ Functions with high quotas can monopolize a core. 
➢ Functions with low quotas will co-locate with other functions per core. 

Quotas are calculated by the 
CPU core utilization in 
docker stat. 

We obtain a normalized 
performance curve for 
each function at different 
CPU frequencies.



System Design:  Function Latency Predictor
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Function Latency Predictor

Runtime Collection

Training Data Auto Generator

Offline Training Inference

Data

Key idea:
➢ We can estimate function execution time 

according to a specified set of inputs based on 
the performance latency trends. 

➢ Use ML-based latency predictor to accurately 
estimate the latency giving the CPU frequency.

Functions on different input size has different end-to-end latency. 

Functions on different core allocation keeps the same latency
trends, even the input size changed. 

18.6% functions generate
99.6% invocations



System Design:  Function Latency Predictor
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Function Latency Predictor

Runtime Collection

Training Data Auto Generator

Offline Training Inference

Data

• Different Types of Function Inputs:
• Numeric Input: Represented by concrete numerical values.
• Composite Input:  A collection of multiple attributes.

Key design: 
➢ We adopt linear regression as the prediction model for latency and 

utilize R2 score and Root Mean Square Error (RMSE) as metrics to 
evaluate the models.

➢ We train specific models for different types of serverless functions.

• Pixel Height
• Pixel Width
• Image Format
• Image Size
• ……

File size

Numeric Input: Composite Input:

High accuracy of 
latency prediction

Lower training and 
inference latency



System Design: QoS-aware Request Queue
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QoS-aware Request Queue

Fn Fn Fn
Priority 
Ranking

Response Ratio (RR) based priority ranking: 

Waiting time Service time

Timeline

Service A

Service B

Request with a higher response 
ratio (RR) will be prioritized.

Waiting time Service time

Timeline

Service A

Service B

Our design combines the advantage of Shortest Job First and First Come 
First Serve algorithms to fairly handle both short tasks and long tasks.



System Design: Core-Level Scheduler
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System Design: Core-Level Scheduler
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Function 
Request

Priority 
Ranking

Container 
Allocation

CPU Frequency 
Adjustment

Function
Invocation

Function
Return

• Core binding:
• Bind functions with free CPU cores in a container
• Assign other CPU cores to a full-use container and bind with the functions
• Preempt a core from other functions and assign an idle container on this core



System Design: Core-Level Scheduler
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Function 
Request

Priority 
Ranking

Container 
Allocation

CPU Frequency 
Adjustment

Function
Invocation

Function
Return

Best Degradation Rate Search Normalized 
Latency under Different 
CPU Frequencies in FLTT

Adjusting CPU 
Core to Optimal 
Frequency

• Server state:
• Idle mode: The system does not run 

processes in the highest frequency.
• Busy mode: If there are too many waiting 

tasks in the queue, all cores work will switch 
to the highest CPU frequency.

• Core Frequency configuration:
• Find frequency with acceptable 

performance
• Select the highest frequency among 

different functions



System Design: Overview
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Evaluation: Methodology

• Evaluated Functions
• selected from FunctionBench [1] and SeBS [2]

• Load Generator
• emulate the fluctuations of the coming requests
• include peaks and valleys

• Metric
• P95 function latency

• Experiment Environment
• separated CPU sockets for function execution and 

the scheduling system
• comparative experiments across three systems

[1] Kim, et al. "Functionbench: A suite of workloads for serverless cloud function service." 2019 IEEE 12th International 
Conference on Cloud Computing (CLOUD). IEEE, 2019.
[2] Copik , et al. "Sebs: A serverless benchmark suite for function-as-a-service computing." Proceedings of the 22nd 
International Middleware Conference. 2021. 22



Evaluation: Experiment Result

• CS achieves an average of 8% power saving when the workload is below the threshold. 
• CS can also have power reduction about 4% compared with PSS on high resource pressure. 
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Evaluation: Experiment Result

• Our work can schedule the tasks before the deadlines (while PSS can not in some cases).
• Compared with the CS without power management (CS w/o PM),  we show acceptable latency reduction.
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Evaluation: Experiment Result

• CS can adapt system dynamically with faster frequency configuration and lower power consumption.
• CS is sensitive to fluctuations in workload. When the workload decreases, the system transitions into a power-

saving mode to enhance efficiency with QoS guaranteed.
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Conclusion

➢ Detailed latency and power analysis of 

serverless functions.

➢ Accurate ML-based latency prediction 

methods for efficient core binding.

➢ Core-level scheduling mechanism with 

low-overhead core configuration.

➢ Significantly saving power cost under 

QoS guarantee.
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(1). Function Level Tuning Table

(2). Function Latency Predictor

(3). QoS-aware Request Queue

(4). Core-Level Scheduler (CS)
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